

Simple Real-Time Flight Over Arbitrary-Sized Terrains

EDUARDO POYART 1, PAULA FREDERICK1, ROBERTO DE BEAUCLAIR SEIXAS1,2 , MARCELO GATTASS 1

1 Tecgraf - Computer Science Department, PUC-Rio,

Rua Marquês de São Vicente 225, 22450-900 Rio de Janeiro, RJ, Brazil
{poyart, paula, tron, gattass}@tecgraf.puc-rio.br

2 IMPA– Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

tron@impa.br

Abstract. Terrain visualization is an area of active research that has yielded many results in the last decade.
Despite all the literature generated, there is still need for a simple and effective solution that takes advantage of
graphics boards available in current consumer PCs. This paper describes an implementation of a modified
version of the Geometrical Mipmaps proposed by de Boer [1]. Our version allows arbitrary sized terrains and
is not restricted to square terrains with a side measuring 2k + 1 samples. Furthermore it is simpler and requires
no preprocessing stage, thus allowing its direct insertion in an existing open GIS such as TerraLib. Results are
shown to validate the ideas presented here and to suggest future works. The source code and some test
examples are available in the internet to promote discussion.

Keywords. Terrain visualization, Geometrical Mipmaps, flight over terrains.

1 Introduction
There are many applications that require a simulated flight
over a terrain. These applications vary from computer
games to computer-assisted installations of well
equipment on the ocean bed.

The literature on algorithms and data structures to
support this kind of visualization is vast. The performance
issues are mainly two: how to quickly discard the portion
of the terrain that is outside the frustum (culling) and how
to produce an optimal mesh to render the rest of the
terrain. “Optimum” here means a mesh with the smallest
number of triangles that has little perceptual difference to
the full mesh.

Two main strategies seem to have prevailed over the
others. The first is based on the papers co-authored by
Hugues Hoppe [2,3,4]. Hugues created a very effective
multi-resolution scheme for arbitrary surfaces is his first
work [2], but later, when he introduced view-dependent
simplification, the algorithm became very complex.

The second strategy is based on the papers co-
authored by Peter Lindstrom [5,6,7,8]. Lindstrom’s work
seeks simple algorithms for terrain visualization and has
achieved a great deal in that direction. A further approach
in this view was proposed by de Boer [1].

Despite all these contributions, there is still need for
a simple and effective solution that takes advantage of
graphics boards available in current consumer PCs. The
present paper describes an implementation of a modified
version of the Geometrical Mipmaps proposed by de Boer
[1]. Our version allows arbitrary sized terrains and is not
restricted to square terrains with a side measuring 2k + 1
samples. Furthermore it is simpler and requires no
preprocessing stage, thus allowing its direct insertion in
an existing open GIS such as TerraLib. Results will be
shown to validate the ideas presented here and to suggest
future works. The source code and some test examples
are available in the internet to promote discussion.

2 Geometrical Mipmapping
The Geometrical Mipmapping (Geo-mipmapping)
technique works as follows. Each terrain block has a
maximum resolution level, in which all data from the
height map is used. From the maximum-resolution block,
several lower-resolution blocks are generated. These
lower-resolution blocks have dimensions that are half the
original, a quarter of the original and so on. When a
terrain block falls under a certain distance d to the camera
(or to the projection plane), this block is rendered with its
full resolution.

When a terrain block is far enough from the viewer,
it can be rendered at a lower resolution. The Geo-
mipmapping technique is analog to the mipmapping
technique for textures. A block of level 0 uses all the
corresponding samples from the terrain. A block of level
1 has half the width and height of the original block, and
so on. A function of d can be used to determine the level
of mipmap to be rendered at each time. The lower-
resolution blocks can be pre-calculated using some kind
of filtering.

When two blocks with different resolution have to be
rendered together, they must be stitched in order to
eliminate visible gaps. De Boer describes a convenient
way to do this stitching: triangular fans are used to
connect a lower-resolution block to a higher-resolution
block.

De Boer describes a way to implement this technique
when the terrain blocks have dimension 2k + 1, where k is
an integer (2k + 1 samples imply 2k segments of terrain, a
segment of the terrain being the space between two
samples). As it is usually necessary to structure the terrain
in a conventional quadtree, this implies that the whole
terrain should be a square with sides of the dimension of a
power of 2 plus one.

3 Geometrical Mipmapping on Arbitrary-Sized
Terrains

Our implementation of the terrain renderer has two major
differences from de Boer's Geometrical Mipmapping. In
the first place, it can be used with arbitrary-sized terrains,
not only square terrains with a side measuring 2k + 1
samples. Secondly, it is a simpler version, being easier to
implement and not requiring preprocessing or special data
structures to hold mipmap levels. Details about the
implementation of the algorithm, which are not presented
by de Boer, will be shown in this work.

3.1 Quadtree Generation
To build a conventional quadtree on a terrain, the data
should be divided exactly in two for the height and width
of the terrain, so that the four children of a node have
exactly the same dimension. This division must continue
until a node reaches a minimum size.

Our quadtree relaxes the exactness of this division.
The terrain can have any size, which will lead to variable-
sized leaf nodes.

The quadtree-generation method is recursive and is
implemented in the constructor of class Quadtree. It is
given a minimum size for the leaf nodes. When of the
dimensions of the current area is smaller than that
minimum size, the division ends. Otherwise, the width
and height is divided in two and rounded down if the size

is odd. The procedure is then called recursively for each
of the four children.

The data held by each node of the quadtree are
simply the minimum x and y and maximum x and y
coordinates of the terrain represented by this node. The
root node of the quadtree stores the index of the minimum
and maximum coordinates of the whole terrain. Each leaf
node has the indices of the block it represents. The actual
samples remain in an array that is created when the height
map is loaded.

3.2 Terrain Renderer
When the terrain is rendered, the variable-sized leaf nodes
must be treated by a special procedure: drawArea, in class
Terrain. Its responsibility is to correctly render a node
with any size at any resolution level, stitching it to the
terrain block at its east and south. To simplify the
multiresolution method, we have opted for simply
skipping samples in order to build a lower-resolution
version of a block. Therefore, lower-resolution blocks do
not have to be pre-generated. We will now examine the
drawArea method by means of a top-down approach.

The drawArea method has to draw the main area of
the terrain and its east and south connections if necessary.
It computes a step, which is a function of the mipmap
level calculated for the block. When the mipmap level is
0, the step is 1, which means every sample is used. When
the mipmap level is 1, the step is 2: the samples are picked
in steps of 2. When the mipmap level is 2, the step is 4,
and so on. Therefore, step = 2m, where m is the mipmap
level.

To draw the main area of the terrain, drawArea calls
the method drawHStrip, passing to it the step to be used.
This method draws one horizontal strip of triangles. It
must take care when the step doesn’t divide the strip by an
exact number of samples. If this happens, a thin square is
drawn at the end of the strip. The method drawArea calls
drawHStrip as many times as necessary to draw the whole
main area. Figure 1 shows the main and connection areas
of drawArea, and Figure 2 shows the general case of
drawHStrip’s output, with a thin square at the end. The
black dots are used samples and the white dots are unused
samples at this resolution level. In this case, the step is 2.

With all the main area of a block completely drawn,
it is time to draw the horizontal and vertical stitching. If
the resolution of the east block is the same as the current
one, no horizontal stitching is needed and drawArea will
already have handled it by extending the horizontal strips
up yo the end of the block. If the resolution of the south
block is the same as the current one, drawArea handles it
by drawing one more horizontal strip to complete the
block.

Terrain samples

Segments

Main area

Connection area

If either the east or the south block has a different
resolution from the current block, either a horizontal or a
vertical connection (or both) must be drawn. This is
handled by the methods drawEastConnect and
drawSouthConnect. The output of these methods is shown
in Figure 3. Each of them draws a series of fans to
connect the blocks. Each fan is drawn by a flexible fan-
drawing method, drawFan, which draws the fans
connecting any given resolution with any other resolution,
in any orientation (horizontal or vertical, with the lower
resolution being above or below, to the left or to the
right). In other words, the responsibility of correctly

drawing a fan is held by drawFan, and the methods
drawEastConnect and drawSouthConnect use drawFan by
calling it with the correct parameters in order to obtain the
intended results.

It is important to notice that drawEastConnect and
drawSouthConnect must be flexible enough to draw
connections with any thickness. The thickness of the
connections can vary from one single segment to the
value of the step used in the block. This implies that
drawFan must have this same flexibility.

The reader can refer to [9] to examine the source
code of our implementation. Some screen outputs are
shown below, on figure 4.

4 Conclusion
Our terrain renderer was a lot simpler to implement than
the version described by de Boer. It also has the
advantage of being able to render terrains of any size
without the need to increase the size to a power of 2 plus
one.

The simplifications introduced two visual differences
from the original idea. First, the use of samples without
filtering for lower resolutions. Filtering can considered
better, but both techniques introduce visual differences
when a lower-resolution version of a block is used.
Filtering does not eliminate this problem completely, so
we are not introducing a new problem, and there is the
advantage of eliminating the need to preprocess the
terrain, which can be useful for some applications.

Second, thin strips of terrain can be a source of
visual artifacts, but, when rendering a texturized terrain
using a lightmap technique for illumination, the difference
is unnoticeable. Thin terrain strips can only be noticed
when viewing a wireframe version of the terrain, and in
some specific situations when vertex lighting is used.

Therefore, development speed and integration with
other pieces of software can be increased by simplifying
the Geo-mipmapping technique. Some compromise in the
visualization exists, but the result is still very acceptable.

This technique can be expanded in the same ways as
the Geomipmapping technique, such as performing
morphing in different resolution levels in order to reduce
popping, and choosing the level of mipmapping based on
screen pixel error, not only camera distance. Particularly
the second one is supported by the drawFan,
drawEastConnect and drawSouthConnect implementation.
These methods are designed to work correctly even when
rendering two blocks with a difference in resolution level
greater than 1. For example, they can correctly connect a
block of level 0 and a block of level 2, although this is not
done on the current implementation.

Figure 1 – A terrain block

Figure 2 – Output of the drawHStrip method.

Figure 4 - Images of the terrain renderer.

Acknowledgements
Tecgraf/PUC-Rio is a laboratory mainly funded by
PETROBRAS and by the Brazilian Marines Navy. The
visualization group from CENPES and IMPA provided
valuable suggestions.

References
[1] de Boer, Fast terrain rendering using geometrical
mipmaps, http://www.flipcode.com/tutorials/geomipmaps.
pdf, Octuber 2000.
[2] Hugues Hoppe, Progressive Meshes, ACM
SIGGRAPH 1996 proceedings, pages 99-108.
[3] Huges Hoppe, View-dependent refinement of
progressive meshes, ACM SIGGRAPH 1997, pages 189-
198.
[4] Hugues Hoppe, Smooth view-dependent level-of-
control and its application to terrain rendering, IEEE
Visualization 1998, pages 35-42.

[5] Kooler, Lindstrom, Ribarsky, Hodges, Faust and
Tuner, Virtual GIS: a real-time 3d geographical
information system, IEEE Visualization 1995, pages 94-
100.
[6] Lindstrom et all., Real-time, continuos level of detail
rendering of height fields, ACM SIGRRAPH 1996, pages
109-118.
[7] Peter Lindstrom and Valerio Pascucci, Visualization
of large terrains made easy, IEEE Visualization 2001,
pages 363-370.
[8] Peter Lindstrom and Valerio Pascucci, Terrain
Simplification Simplified: A General Framework for
view-depandent out-of-core visualization, IEEE
Transactions on Visualization and Computer Graphics,
8(3), pages 239-254, 2002.
[9] Código fonte do renderizador de terrenos na Web

