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Abstract. Terrain visualization is an area of active research that has yielded many results in the last decade.  
Despite all the literature generated, there is still need for a simple and effective solution that takes advantage of 
graphics boards available in current consumer PCs. This paper describes an implementation of a modified 
version of the Geometrical Mipmaps proposed by de Boer [1].  Our version allows arbitrary sized terrains and 
is not restricted to square terrains with a side measuring 2k + 1 samples.  Furthermore it is simpler and requires 
no preprocessing stage, thus allowing its direct insertion in an existing open GIS such as TerraLib.  Results are 
shown to validate the ideas presented here and to suggest future works.  The source code and some test 
examples are available in the internet to promote discussion. 
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1 Introduction  
There are many applications that require a simulated flight 
over a terrain. These applications vary from computer 
games to computer-assisted installations of well 
equipment on the ocean bed. 

The literature on algorithms and data structures to 
support this kind of visualization is vast. The performance 
issues are mainly two: how to quickly discard the portion 
of the terrain that is outside the frustum (culling) and how 
to produce an optimal mesh to render the rest of the 
terrain.  “Optimum” here means a mesh with the smallest 
number of triangles that has little perceptual difference to 
the full mesh. 

Two main strategies seem to have prevailed over the 
others.  The first is based on the papers co-authored by 
Hugues Hoppe [2,3,4]. Hugues created a very effective 
multi-resolution scheme for arbitrary surfaces is his first 
work [2], but later, when he introduced view-dependent 
simplification, the algorithm became very complex. 

The second strategy is based on the papers co-
authored by Peter Lindstrom [5,6,7,8]. Lindstrom’s work 
seeks simple algorithms for terrain visualization and has 
achieved a great deal in that direction.  A further approach 
in this view was proposed by de Boer [1].  

Despite all these contributions, there is still need for 
a simple and effective solution that takes advantage of 
graphics boards available in current consumer PCs. The 
present paper describes an implementation of a modified 
version of the Geometrical Mipmaps proposed by de Boer 
[1]. Our version allows arbitrary sized terrains and is not 
restricted to square terrains with a side measuring 2k + 1 
samples.  Furthermore it is simpler and requires no 
preprocessing stage, thus allowing its direct insertion in 
an existing open GIS such as TerraLib.  Results will be 
shown to validate the ideas presented here and to suggest 
future works.  The source code and some test examples 
are available in the internet to promote discussion. 

2 Geometrical Mipmapping 
The Geometrical Mipmapping (Geo-mipmapping) 
technique works as follows. Each terrain block has a 
maximum resolution level, in which all data from the 
height map is used. From the maximum-resolution block, 
several lower-resolution blocks are generated. These 
lower-resolution blocks have dimensions that are half the 
original, a quarter of the original and so on. When a 
terrain block falls under a certain distance d to the camera 
(or to the projection plane), this block is rendered with its 
full resolution. 



  

When a terrain block is far enough from the viewer, 
it can be rendered at a lower resolution. The Geo-
mipmapping technique is analog to the mipmapping 
technique for textures. A block of level 0 uses all the 
corresponding samples from the terrain. A block of level 
1 has half the width and height of the original block, and 
so on. A function of d can be used to determine the level 
of mipmap to be rendered at each time. The lower-
resolution blocks can be pre-calculated using some kind 
of filtering. 

When two blocks with different resolution have to be 
rendered together, they must be stitched in order to 
eliminate visible gaps. De Boer describes a convenient 
way to do this stitching: triangular fans are used to 
connect a lower-resolution block to a higher-resolution 
block. 

De Boer describes a way to implement this technique 
when the terrain blocks have dimension 2k + 1, where k is 
an integer (2k + 1 samples imply 2k segments of terrain, a 
segment of the terrain being the space between two 
samples). As it is usually necessary to structure the terrain 
in a conventional quadtree, this implies that the whole 
terrain should be a square with sides of the dimension of a 
power of 2 plus one. 

3 Geometrical Mipmapping on Arbitrary-Sized 
Terrains 

Our implementation of the terrain renderer has two major 
differences from de Boer's Geometrical Mipmapping. In 
the first place, it can be used with arbitrary-sized terrains, 
not only square terrains with a side measuring 2k + 1 
samples. Secondly, it is a simpler version, being easier to 
implement and not requiring preprocessing or special data 
structures to hold mipmap levels. Details about the 
implementation of the algorithm, which are not presented 
by de Boer, will be shown in this work. 

3.1 Quadtree Generation 
To build a conventional quadtree on a terrain, the data 
should be divided exactly in two for the height and width 
of the terrain, so that the four children of a node have 
exactly the same dimension. This division must continue 
until a node reaches a minimum size. 

Our quadtree relaxes the exactness of this division. 
The terrain can have any size, which will lead to variable-
sized leaf nodes. 

The quadtree-generation method is recursive and is 
implemented in the constructor of class Quadtree. It is 
given a minimum size for the leaf nodes. When of the 
dimensions of the current area is smaller than that 
minimum size, the division ends. Otherwise, the width 
and height is divided in two and rounded down if the size 

is odd. The procedure is then called recursively for each 
of the four children. 

The data held by each node of the quadtree are 
simply the minimum x and y and maximum x and y 
coordinates of the terrain represented by this node. The 
root node of the quadtree stores the index of the minimum 
and maximum coordinates of the whole terrain. Each leaf 
node has the indices of the block it represents. The actual 
samples remain in an array that is created when the height 
map is loaded. 

3.2 Terrain Renderer 
When the terrain is rendered, the variable-sized leaf nodes 
must be treated by a special procedure: drawArea, in class 
Terrain. Its responsibility is to correctly render a node 
with any size at any resolution level, stitching it to the 
terrain block at its east and south. To simplify the 
multiresolution method, we have opted for simply 
skipping samples in order to build a lower-resolution 
version of a block. Therefore, lower-resolution blocks do 
not have to be pre-generated. We will now examine the 
drawArea method by means of a top-down approach. 

The drawArea method has to draw the main area of 
the terrain and its east and south connections if necessary. 
It computes a step, which is a function of the mipmap 
level calculated for the block. When the mipmap level is 
0, the step is 1, which means every sample is used. When 
the mipmap level is 1, the step is 2: the samples are picked 
in steps of 2. When the mipmap level is 2, the step is 4, 
and so on. Therefore, step = 2m, where m is the mipmap 
level. 

To draw the main area of the terrain, drawArea calls 
the method drawHStrip, passing to it the step to be used. 
This method draws one horizontal strip of triangles. It 
must take care when the step doesn’t divide the strip by an 
exact number of samples.  If this happens, a thin square is 
drawn at the end of the strip. The method drawArea calls 
drawHStrip as many times as necessary to draw the whole 
main area. Figure 1 shows the main and connection areas 
of drawArea, and Figure 2 shows the general case of 
drawHStrip’s output, with a thin square at the end. The 
black dots are used samples and the white dots are unused 
samples at this resolution level. In this case, the step is 2. 

With all the main area of a block completely drawn, 
it is time to draw the horizontal and vertical stitching. If 
the resolution of the east block is the same as the current 
one, no horizontal stitching is needed and drawArea will 
already have handled it by extending the horizontal strips 
up yo the end of the block. If the resolution of the south 
block is the same as the current one, drawArea handles it 
by drawing one more horizontal strip to complete the 
block. 
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If either the east or the south block has a different 
resolution from the current block, either a horizontal or a 
vertical connection (or both) must be drawn. This is 
handled by the methods drawEastConnect and 
drawSouthConnect. The output of these methods is shown 
in Figure 3. Each of them draws a series of fans to 
connect the blocks. Each fan is drawn by a flexible fan-
drawing method, drawFan, which draws the fans 
connecting any given resolution with any other resolution, 
in any orientation (horizontal or vertical, with the lower 
resolution being above or below, to the left or to the 
right). In other words, the responsibility of correctly 

drawing a fan is held by drawFan, and the methods 
drawEastConnect and drawSouthConnect use drawFan by 
calling it with the correct parameters in order to obtain the 
intended results.  

It is important to notice that drawEastConnect and 
drawSouthConnect must be flexible enough to draw 
connections with any thickness. The thickness of the 
connections can vary from one single segment to the 
value of the step used in the block. This implies that 
drawFan must have this same flexibility. 

The reader can refer to [9] to examine the source 
code of our implementation. Some screen outputs are 
shown below, on figure 4. 

4 Conclusion 
Our terrain renderer was a lot simpler to implement than 
the version described by de Boer. It also has the 
advantage of being able to render terrains of any size 
without the need to increase the size to a power of 2 plus 
one. 

The simplifications introduced two visual differences 
from the original idea. First, the use of samples without 
filtering for lower resolutions. Filtering can considered 
better, but both techniques introduce visual differences 
when a lower-resolution version of a block is used. 
Filtering does not eliminate this problem completely, so 
we are not introducing a new problem, and there is the 
advantage of eliminating the need to preprocess the 
terrain, which can be useful for some applications. 

Second, thin strips of terrain can be a source of 
visual artifacts, but, when rendering a texturized terrain 
using a lightmap technique for illumination, the difference 
is unnoticeable. Thin terrain strips can only be noticed 
when viewing a wireframe version of the terrain, and in 
some specific situations when vertex lighting is used. 

Therefore, development speed and integration with 
other pieces of software can be increased by simplifying 
the Geo-mipmapping technique. Some compromise in the 
visualization exists, but the result is still very acceptable. 

This technique can be expanded in the same ways as 
the Geomipmapping technique, such as performing 
morphing in different resolution levels in order to reduce 
popping, and choosing the level of mipmapping based on 
screen pixel error, not only camera distance. Particularly 
the second one is supported by the drawFan, 
drawEastConnect and drawSouthConnect implementation. 
These methods are designed to work correctly even when 
rendering two blocks with a difference in resolution level 
greater than 1. For example, they can correctly connect a 
block of level 0 and a block of level 2, although this is not 
done on the current implementation. 

 

 

 

 

Figure 1 – A terrain block 

Figure 2 – Output of the drawHStrip method. 



  

Figure 4 - Images of the terrain renderer. 
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