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Abstract. This work presents a simple, stable and fast hair simulation
system for interactive graphics applications whose CPU budget for hair
simulation is small. Our main contribution is a hair-head collision method
that has very little CPU cost and simulates the volumetric effect of hair
resting on top of each other without the need for hair-hair collision. We
also present a simulation-based hair styling method for end-users. This
easy to use method produces hair styles for the whole head, and it is
particularly suitable for abstract and exotic styles. It is applicable for
video games in which avatars can be customized by the user.
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1 Introduction

Animating hair in real time remains a hard task in computer graphics. An av-
erage human head has in the order of 100,000 highly deformable strands of hair
that constantly interact with their neighbors and the scalp. Furthermore, real-
time applications such as video games often display many characters at the same
time, with hair motion being a secondary effect to other more important tasks
that also require computational resources. This leaves very small CPU and GPU
budgets for hair simulation, which means that a practical hair simulation system
must be extremely efficient.

To address this challenge, many real-time applications trade realism for per-
formance. The most realistic method of animating and rendering hair in real
time is rarely the most desirable one, due to those performance constraints.
Making simplifications that produce a pleasant result, albeit with some physical
inaccuracies, can be very useful if the results have good real-time performance.

A good candidate for simplification or elimination is hair-hair collision, which
is generally the most costly operation in hair simulation. We can assume the ap-
plication doesn’t require close-up shots and it’s difficult or nearly impossible to
notice hair crossing each other. However, one side effect remains: hair strands
lie flat at the head surface. This causes a loss of hair volume, and also bad in-
terpenetrating artifacts when common texturing and shading methods are used.

The main contribution of this work is a novel hair-head collision technique
that solves the problem of hair strands resting on top of each other without the
need for hair-hair collision. This technique is very fast and produces believable



results, and differently from previous work, it doesn’t produce artifacts when the
head tilts.

As a secondary result, we present a method to allow an end-user such as a
video game player to quickly and interactively create exotic and artistic hairstyles.
Hair styling is traditionally a complex and time-consuming process, which in-
volves editing meshes or other parameters in a specialized tool. A system for
creating entertaining hair styles quickly and easily can be applied, for example,
in video games in which the player creates his/her own characters.

It is important to notice that in this work we focus exclusively on the motion
of the hair; we consider rendering a separate problem that we will address in the
future.

The remainder of this document is organized as follows. On Section 2, we
analyze related work in hair simulation and hairstyle modeling. Section 3 shows
how we assign hair to the head. Sections 4 describes the simulation and collision
method. Section 5 describes the main aspect of our contribution, segment-based
head collision. Section 6 discusses how our real-time simulator can be used for
hair styling, using a force-field-based virtual combing method. The last section
summarize our results and describes future work.

2 Related Work

Since the pioneering work of Terzopoulos et al. [17], a lot of work has been
done on deformable models and hair. A very complete survey of hair styling,
simulation and rendering can be found in [20]. In the remainder of this section,
we only discuss the most relevant prior work.

Chang et al. [4] introduced the concept of guide hair, a small number of hair
strands which undergo physical simulation and guide the rest of the hair. We
use this concept in our work.

Real-time results were achieved by some animation techniques, such as [16],
which uses the GPU. Our technique, in contrast, uses only the CPU. In some
cases this may be desirable – if the GPU is free from the physical simulation, it
can be used to render hair using a more complex algorithm in real time.

Hair strands can be simulated as springs and masses [14] or as more complex
models, including rigid bodies connected by soft constraints [6]. Springs are
revisited by Plante et al. [13], in which their stretchiness is used to model wisps
of curly and almost-straight hair, and by Selle et al. [15], in which the authors
model a complex arrangement of springs capable of modeling straight and curly
hair, but with non-real-time performance.

To achieve real-time performance, Lee and Ko [9] chose not to model hair-
hair collision. They obtain hair volume by colliding the hair with different head
shells based on pore latitude on the head. Their method suffers from artifacts if
the head tilts too much (e.g. looking down). Our method, in contrast, modulates
the head shells based on hair segment, instead of pore latitude. We show that
our approach achieves the same volumetric results, doesn’t suffer from artifacts
when the head tilts, and gives the added benefit of allowing spiky hair modeling.



There are many other possible modeling techniques, of various degrees of
complexity. Some examples are: loosely connected particles distributed inside
the hair volume [1], simulating hair on a continuum ([7], [8], [10]), or trigonal
prisms with limited degrees of freedom based on a pendulum model [5].

Hair styling based on meshes was developed by [21]. In this work, an in-
teractive system is used to allow an artist to model hair styles by performing
usual mesh editing operations. This model is very flexible, however it is also time
consuming. Our method allows almost instant generation of artistic and exotic
hair styles, albeit without a lot of that flexibility and control. Also in the area of
hair styling, [19] developed automated hair style generation by example, which
is useful for rendering large amounts of unique but similar hair styles.

3 Head parametrization

We parametrize the head and randomly assign hair roots by using the Lambert
azimuthal projection. One of its important properties is area preservation. It
provided good results in distributing hair over the hair. The procedure is de-
scribed as follows. A random point in the plane xy, uniformly distributed in
the circle of radius
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stored in the data structure for the strand, and it is also projected into the 3D
sphere using the Lambert azimuthal projection, as follows:

(x, y, z) =

(√
1− X2 + Y 2

4
X,

√
1− X2 + Y 2

4
Y,−1 +

X2 + Y 2

2

)
(1)

Since the radius of the originating circle is
√

2, the projection will occupy
the lower hemisphere of the head. The vertex position is then transformed to
the upper hemisphere, and rotated by 30 degrees towards the back of the head,
which approximates real-life hair distribution. Note that the generation process is
separated from the animation process. A better, more accurate hair distribution
can be envisioned without any penalty for the run-time system.

4 Hair Animation

In the run-time system, the hair is modeled as masses and springs. Each node
has a mass, and springs connects the nodes. The root nodes lie at the head
surface. One hair strand is a linear connection of nodes and springs in between
them, starting from the root node and extending until the last node. All hairs
in the head have the same number of nodes.

Two main reasons led us to choose masses and springs as a modeling method.
First, we intended to achieve real-time performance, and by using springs and
masses combined with forward Euler integration we achieved results that are
computationally very fast. Second, it is an easy method to implement, which



has a positive impact on its applicability in current real-time systems such as
video-games.

The run-time physical simulation system perform collision detection and res-
olution between hair and head, computes forces applied to the nodes due to the
springs and gravity, performs integration, and applies error correction. These
steps will be explained on this section. We opted not to simulate hair-hair colli-
sion to avoid the associated computational cost; instead we focus on techniques
to obtain good results without it.

The following pseudo-code shows the hair simulation algorithm.

For every simulation step:

Collide_with_sphere()

Assign_spring_forces()

Euler_integration()

Apply_ERP()

Procedure Collide_with_sphere():

For every hair strand:

For every node (except the root):

If node is inside sphere:

Correct position

Assign force to node

Procedure Assign_spring_forces():

For every hair strand:

For every segment:

Add spring force to both nodes

Procedure Euler_integration():

For every hair strand:

For every node (except the root):

Compute acceleration according to force

Compute velocity according to acceleration

Compute position according to velocity

Procedure Apply_ERP():

For every hair strand:

For every node (except the root):

Update node position based on ERP

4.1 Head Collision

Collision between the hair and the head is performed by sphere collision. If the
distance between a node and the center of the head is smaller than r, this node
has collided with the head. The center of the sphere and radius r have to be
fine-tuned so as to align the sphere as close as possible with the head model



being used for rendering. An ellipse matches human heads more closely. Each
node can be transformed by a translation and a non-uniform scaling matrix, such
that the collision ellipse becomes a sphere. With that, the usual sphere collision
detection can be easily performed.

Once we find a node that penetrates the sphere or ellipse, we need to apply a
correction force, which is proportional to the amount of penetration. But before
applying this force, we apply a position correction, which will be discussed in
Section 4.4. The force is computed using Hooke’s law, with a different spring
constant (head ks) than the one used on the hair segments (ks). The force is
applied to a force accumulator array which has one 3D vector per node per
strand. This array is previously set to zero at the beginning of each simulation
step.

4.2 Spring Forces

The next step is to add spring forces to the force accumulator array. The forces
applied follow Hooke’s law:

f = −ksx− kdv (2)

where ks and kd are the spring and damping constants, x is the spring extension
from the rest length, and v is the current velocity of the node. All segments have
the same rest length.

4.3 Euler Integration

The forward Euler integrator simply takes in the time step value and the array
of forces applied to nodes, and computes acceleration, velocity and position for
each node, as described in the pseudocode.

Euler integration is subject to instabilities when the springs are too stiff,
when the time step is too big, or when the masses are too light. We used a fixed
time step of 1/60 second. With this time step, we fine tuned the mass and ks in
order to have stability. This resulted in a low spring constant, and the system
suffered from loose springs. Instead of replacing the integration method with a
more expensive one, we solved this problem with the technique explained below.

4.4 Error Reduction Parameter (ERP)

With a spring-mass system for hair strands, the length of each hair segment
is not guaranteed to be constant, especially when ks is low. In practice, this
means that each spring will extend under the weight of the nodes and the hair
will stretch, and worse, it will bounce up and down. This is a major cause of
unnatural results for hair modeled this way. If ks is increased to achieve stiffer
springs, the system becomes unstable unless kd is increased as well.

One solution would be to use a rigid body model for each segment and solving
a system of equations for each hair strand. This was not implemented due to the



computational cost that would result. The algorithm would no longer be linear
on the number of segments per hair, unless a more advanced algorithm such as
Featherstone [11] was used.

Another solution is to implement an error reduction parameter (ERP), sim-
ilar to the one implemented in Open Dynamics Engine [12]. ERP is simply a
scalar value between 0 and 1 that defines how much of the length error will be
corrected at each time step. The correction is performed as a change in posi-
tion of each node, along the length of the spring, towards the correct length. If
ERP=0, there is no correction. If ERP=1, there is full correction: each node will
be moved so that the length is fully corrected in one time step.

Why not always use ERP=1, correcting by the full amount every time step?
Performing error reduction in this fashion has the practical effect of introducing
damping on the system. Tests made with ERP=1 showed that the system became
too damped, so smaller values had to be used. Common values for all parameters
are presented on Table 1. With these values, kd introduces virtually no damping
while ERP is set to the highest value possible that would not result in too much
damping – “too much damping” being an empirically observed behavior. This
gave us the best possible constraint on hair length. It is important to notice that
this achieves a better constraint/damping ratio than what would be achieved by
increasing ks and kd alone without the use of ERP.

Table 1. Simulation parameters that provided realistic and stable results.

Parameter Value

head radius 1
number of segments 10

hair length 0.1 to 2.0
ks 15
kd 0.0001

mass 0.001
erp 0.6

head erp 0.5
head ks 5

sphere distance factor 0.02

4.5 Guide Hair

We employ the guide hair technique [4] in order to get as close as possible
to 100,000 hair in real time. We physically simulate only a small amount of
hair and interpolate the nodes of the remaining hair. We found that physically
simulating 2000 guide hair and rendering 20,000 to 40,000 hair typically give
adequate, interactive performance.



5 Segment-Based Head Collision

As described so far, the system is real-time and stable, and maintains an almost
constant length for simulated hair strand. However, a major drawback is that
the hair resting on top of the head is very flat, with no volume being formed due
to layers of hair lying on top of each other. In this section we describe previous
efforts to overcome this problem, and then our technique to do the same, and
we compare it to a more expensive method of hair-hair collision.

Lee and Ko [9] achieve volume by increasing the head collision radius based
on pore latitude on the head. The head collision sphere is increased the most
when the pores are close to the top of the head. This leads to a result where
layers of hair whose pores are higher on the head rest on top of other layers. The
biggest drawback of this technique is that, if the head tilts, the order is inverted
and the result is unnatural, with hair strands crossing each other. The more the
head tilts, the more this crossing over happens.

Let us consider the fact that our hair is a sequence of straight line segments.
Between these segments there are nodes, which are indexed, starting with 0,
which is the root of the hair strand on the head, and ending with the maximum
number of nodes in a strand. In order to maintain layers of hair on the head,
the ordering of nodes can be used to slightly increase the sphere radius step by
step. That is, the further away from the root a node is, the further away from
the head will be its actual collision surface. Fig. 1 depicts this idea. A parameter
called sphere distance factor (sdf) represents the increase in radius that is in
effect at the last node in the hair strand. Therefore, the per-node increase is
sdf/n, n being the number of nodes. Parametrizing sdf this way allows the user
to change the number of nodes, e.g. to improve performance, and have consistent
visual results, without having to change sdf as well to compensate.

We compared this technique with hair-hair collision. In our hair-hair collision
implementation, the main computational primitives used were line-line distance
and point-line distance functions. Both penalty forces and position displacement
were attempted. We had oscillations in the system, especially at the top of the
head. Furthermore, with nothing but guide hair being simulated, there was not
enough guide hair to achieve volume. The interpolated hair still appears flat.
Chang et al., in [4], attacked this problem by adding triangle strips between
guide hair, with an added performance penalty.

Even though hair-hair collision is more general, our approach of index-based
head distance comes virtually for free and solves the problem of hair strands
resting on top of each other. The flatness of the head is avoided, and hair strands
no longer crisscross each other when lying on the head. It works even if only a
small number of guide hair are simulated.

As an added bonus, a new hair style can be generated: spiky hair. This can
be achieved by making sdf large enough. By making the collision radius grow
linearly with the segment index, we had surprisingly interesting results. A high
sdf produces great fur simulation. Both spiky hair and fur are depicted on Fig. 2.
Other extensions can be devised. The collision radius growth need not be linear.
A quadratic increment, for example, makes the hair more spiky. Exotic collision



shapes can also be used. Figure 3 shows the result of a collision sphere whose
horizontal cross-section is perturbed by a sine wave. This creates vertical “hills
and valleys” which shape the hair. This figure also show how volume is retained
with segment-based head collision even if long hair is used.

The accompanying video in http://www.erpoyart.com/research/hair shows
a comparison between the previous latitude-based head collision and our index-
based head collision. It highlights hair layers crossing each other in the latitude-
based method, which doesn’t happen with index-based collision.

Fig. 1. Segment based collision. The thicker line segments are hair segments; the solid
circle represents the head surface where the root nodes lie and the dashed circles are
collision spheres for subsequent nodes of the hair.

Fig. 2. Spiky hair (left) and fur (right) obtained using segment based collision.

6 Hair Styling

Achieving interactive physically-based hair simulation gives rise to interesting
possibilities. One of them is the easy modeling of hair styles by pausing the
physical simulation at any point in time and interacting with the hair.

This feature was implemented in our system. The user can interactively rotate
and move the head, which will cause the hair to move under physics, and he/she



Fig. 3. Left: An exotic collision shape gives “hills and valleys” to the hair. Right:
Volume is retained with long hair.

can pause and continue the simulation at will. Pausing the simulation causes each
node to be attached to its current position in head-space through zero-length
springs. The attachment points are called anchors. The hair is still simulated and
it responds to head movements and other agents like wind, as if the character
applied gel to fix his hairstyle.

We also allow the user to perform “virtual combing”. Mouse drag operations
are transformed from screen coordinates to world coordinates, lying on a plane
parallel to the screen and just in front of the head. This plane intersects with
many of the hair strands closest to the user. The movement direction, V , is a
vector pointing from the previous to the current projection point. In the vicinity
of the current projection point P , we define a vector field whose magnitudes
follow a Gaussian fall-off law:

m = e(−kd2) (3)

where d is the distance between P and a point in the vector field, and k is an
empirically determined constant that defines how big the area of actuation is.
The scalar m is computed for each node in each strand of hair. If it lies above a
certain threshold (we used 0.1), it scales the vector V and the resulting vector
modifies the node position.

With a little practice, the user can quickly figure out many ways to obtain
hair styles with this method. In Fig. 4, a few examples are shown in which
only head movements were applied, and in Fig. 5 head movements and virtual
combing were applied together.

Due to the simplicity and “fun-factor” of this hair styling technique, and
due to the fact that it can generate very artistic and abstract hair styles, we
envision its immediate use in video game applications, particularly RPGs or
massively multiplayer games in which the user creates and customizes his/her
character (avatar) before starting the game. This customization nowadays mainly
supports the selection of one out of a number of predefined hair styles that
can be customized minimally. Such functionality can be found for exampled in



Fig. 4. Examples of different hair styles obtained using the system, without combing.

Fig. 5. Hair styles obtained by combing.

the popular games Oblivion [2] and World of Warcraft [3]. Allowing the user
to customize a hair style interactively with a physically based system would be
something new and potentially entertaining. Even for systems that can’t animate
hair in real time due to CPU budget constraints, the physically-based system
can run during the character customization phase since the CPU is not heavily
required at that point (no game logic is running and no other characters are
being rendered), and the character can appear in-game with a static rendering
of the styled hair created by the user. This would add an element of fun to the
game.

7 Results

The present algorithm is very fast and linear in time complexity, simulating
around 20,000 hair strands at 30 frames per second, or around 40,000 at 15
frames per second. It produces good visual results and it is fun to interact with.
The performance effect of introducing guide hair is shown on Table 2. An even
more important indication of performance is the time taken for the physics sim-
ulation, including integration and collision of guide hairs and update of slave
hairs: around 4.4 ms – only 1/8th of a frame at 30 fps on a single CPU core. We
were able to simulate multiple simultaneous heads with hair. On the accompa-
nying video, we show three heads with hair simulated at 30 frames per second
(the frame rate is shown at 25 due to the cost of video capture).



The method has a few drawbacks. Since there is no hair-hair collision, there is
hair interpenetration. In a real-world application such as a simulation or video-
game, care must be taken so that this effect is hidden from the user as much as
possible. We noticed that if the character is not being viewed at close-up, hair-
hair interpenetration is not noticeable. The modeling system, although easy to
use, does not allow for detailed control. It is primarily based on trial and error.
Our implementation of virtual combing also does not allow precise fine-tuning;
it is geared towards major changes in hair positioning.

Table 2. Effect of guide hair on performance. Results obtained on a 2.5 GHz Intel
Core 2 Duo, using only one core.

Simulated (Guide) Hair Slave Hair Frame Rate Physics Sim. Time

20,000 0 19 fps 23 ms
1,000 19,000 33 fps 4.4 ms

8 Conclusion

This work introduced a real-time hair simulation system that is very fast and
relatively simple to implement. Its time complexity is linear on the number of
hair strands and number of nodes per hair strand, which means the number
of strands can be greatly increased, up to the same order of magnitude as the
human head, and still maintain interactive frame rates. We achieve volume on
the hair, as opposed to a flat hair style, by means of segment-based head collision.

A simple modeling method is also introduced. By simply moving the head,
freezing the system and applying virtual combing, the user can quickly get in-
teresting hair styles. This is especially useful for abstract and artistic hair styles.
This styling method can be applied to situations such as video games where the
player is able to customize an avatar. In that kind of situation the requirement
is usually that the modeling process shouldn’t be lengthy, complex or detailed;
it should be simple and fun to use. The fact that our system runs entirely in
real-time with attractive results makes this possible.

There are many avenues to extend this work. We would like to experiment
with other integration schemes, such as Verlet integration, and articulated body
representations of hair.

The styling system can be extended in many different ways so that the user
has better control of the results. A combination of user defined vector-fields
and physical interaction would be very interesting to pursue. Furthermore, the
results of the user-generated hair styles developed here can be fed into a system
such as [19], and variations of the hair styles can be automatically generated.
Hair rendering is another aspect that will be addressed in the future, since in
the current work we have opted to focus exclusively on modeling and animation.
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